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a b s t r a c t

Bayesian networks (BNs) are a probabilistic modeling platform that connect variables

through a series of conditional dependences. We demonstrate their utility for broad-scale

conservation of amphibian populations where different types of information may be avail-

able within the region. Wildlife conservation decisions for most species are made jointly

with other objectives and are tightly constrained by finances. Bayesian networks allow the

use of all available information in predictions, and can provide managers with the best

available information for making decisions. Habitat models were developed as a hierar-

chical Bayesian (HB) model for aquatic amphibian populations in the temperate Oregon

Coast Range, USA. Predictions for new streams sections were made jointly using a Bayesian

network to allow the inclusion of different types of available information. Missing habi-

tat variables were modeled based on habitat survey information. Uncertainty in the true

(but unknown) habitat variables were incorporated into the prediction intervals. Further,

the probabilistic approach allowed us to incorporate survey information for co-occurring

species to help make better predictions. Such species information was connected through

the Bayesian network by the conditional dependence that arises from shared habitat vari-

ables. The utility of Bayesian networks was shown for these populations for broad-scale

risk management. In contrast to deterministic models, the probabilistic nature of Bayesian

networks is a natural platform for incorporating uncertainty in predictions and inference.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Wildlife management in the forested Pacific Northwest (PNW)
is integrated with other objectives such as timber production
and recreation. As such, most wildlife populations are con-
sidered with an informal risk management or adaptive man-
agement approach (FEMAT, 1993). With a risk management
approach, decisions are partly based on perceived risk to a
species which may be lower for certain types of management,
or where the species is relatively abundant in adjacent areas.

∗ Corresponding author. Tel.: +1 541 737 6215; fax: +1 541 737 1393.
E-mail addresses: duncan.wilson@oregonstate.edu, dunc steil@yahoo.com (D.S. Wilson), mstodd@ufl.edu (M.A. Stoddard),

klaus.puettmann@oregonstate.edu (K.J. Puettmann).

Adaptive management uses population information and
trends following large-scale habitat manipulations to adjust
ongoing management strategies. These population trends
cannot be determined, and decisions on whether mitigation is
necessary cannot be made without broad-scale survey infor-
mation for multiple species (Marsh and Trenham, 2001; Muths
et al., 2006). Both management approaches therefore rely
heavily on population information gathered through surveys.

The extent to which a wildlife population is monitored
depends primarily on the conservation status of the species.

0304-3800/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
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Federally listed, Endangered Species have formal monitoring
programs in place, but Species of Concern for which more
information are needed to determine their conservation sta-
tus are monitored in a piecemeal fashion (e.g., FEMAT, 1993).
An example is the Federal Survey and Manage program in the
Pacific Northwest (Olson, 1999; Molina et al., 2006). Areas con-
sidered for management are intensively surveyed for plant
and wildlife Species of Concern, and when found, appropri-
ate mitigation is considered in management plans. Relatively
abundant species are not considered, even though they may
be rare or absent in a particular watershed or near the edge of
their range.

Information gathered in the Survey and Manage program
is area-specific and not formally used in management deci-
sions made at the regional scale or even on adjacent land.
This unfortunate shortfall is due to its ad hoc nature and is
unavoidable with scarce monitoring funds that cannot cover
all wildlife species or allow systematic continuous monitor-
ing. Even so, such information has potential use and may be
incorporated into risk and adaptive management strategies
using probabilistic models (Varis and Kuikka, 1999; Borsuk et
al., 2004; Lee and Irwin, 2005).

Our objective was to demonstrate the utility of a joint
Bayesian parameter estimation and prediction approach for
monitoring and risk management. The approach makes use
of the probabilistic modeling framework of Bayesian networks
(BNs). The manner in which BNs portray conditional rela-
tionships allows different types of evidence to be used in
predictions. Missing covariates are modeled using a proba-
bility distribution of likely values. Further, predictions can
incorporate survey information for co-occurring species when
species are conditional dependent on a subset of the same
habitat variables. This unique property of BNs allows ‘informa-
tion passing’ between co-occurring species through the shared
habitat variables. We further discuss how the BN probabilis-
tic framework can be exploited by a diverse suite of modeling
topics.

We illustrate the BN approach with data from a multi-scale
amphibian study set in the Oregon Coast Range (Stoddard
and Hayes, 2005). Amphibians are closely monitored in the
PNW since some species are sensitive to habitat changes
caused by logging (Corn and Bury, 1989; Vesely and McComb,
2002). In this study, habitat models for four aquatic species
were developed as a hierarchical Bayesian (HB) model. In
addition to new predictions based on model parameters and
measured covariates, the BN framework allows predictions
with incomplete information. We explore the utility of the
approach for predicting probability of occurrence under
different types of incomplete information, including missing
habitat covariates. We also examine possible gains in survey
efficiency in making predictions using survey information
for co-occurring species. Finally, we discuss the benefits of a
probabilistic model-based framework for risk management of
these amphibian populations.

2. Study area and amphibian surveys

The study was conducted in drainages on Bureau of Land Man-
agement (BLM) land on the eastern side of the Oregon Coast

Range, USA. The region has a moist maritime climate, charac-
terized by cool wet winters and dry summers. Forest stands
within study drainages comprised primarily second-growth
Pseudotsuga menziesii forests naturally regenerated following
logging, or younger planted clearcuts. The study area lies
within the low elevation, Tsuga heterophylla zone (Franklin and
Dyrness, 1973).

Sixteen third-order drainages ranging from 90 to 200 ha
were randomly sampled from the population of all drainages
on BLM lands of the Eugene and Salem Districts. Amphib-
ians were censused in 35–50 randomly chosen 2-m lengths of
stream (sample points) within each drainage. Sample points
had visible surface flow, were less than 0.5 m deep, and were
located in ephemeral, discontinuous or perennial streams.
Presence or absence was recorded of Pacific giant salaman-
ders (Dicamptodon tenebrosus) (PGS), larval (LTF) and adult (ATF)
tailed frogs (Ascaphus truei), southern torrent salamanders
(Rhyacotriton variegatus) (TS), and Columbia torrent salaman-
ders (Rhyacotriton kezeri) (TS). The two Rhyacotriton spp. were
geographically separate and had similar habitat associations
(Wilkins and Peterson, 2000; Stoddard and Hayes, 2005) and
thus were combined for analysis. At least one species was
found at 59% of the stream sections sampled. Methods for
surveying amphibians followed standard protocols (Bury and
Corn, 1991).

Sample points were distributed randomly within the
drainages, but were later grouped into stands based on the
age classes of forest bordering the stream (classes: 0–15, 16–55,
55–105 and greater than 105 years). Stands contained between
1 and 34 sample points, with a mean of 4.6. A total of 702
sample points across 153 stands were surveyed in the sum-
mers of 1998 and 1999. At each sample point, potential habitat
variables were recorded including the percentage slow water
(%SLOW) (pools and glide), percentage fine substrate (%FINE)
(bedrock and particle sizes less than 32 mm), mean stream
width (m) (WIDTH), percentage of undercut bank (%UNDER),
and percentage cover of coarse wood (%CWD). Habitat vari-
ables at the stand- and drainage-scales were not considered
explicitly in this analysis. A complete description of the study
area and sampling methods is found in Stoddard and Hayes
(2005).

3. Methods

3.1. Bayesian parameter estimation

Presence absence data were analyzed using an HB model
(Gelman et al., 2004). At the stream-scale (2-m sample points)
we used logistic regression to characterize a habitat model as

Yijkl ∼ Bern(pijkl) (1)

Yijkl was the presence/absence data at sample point l, for
species i in stand j, and drainage k. The probability of occur-
rence (p) was modeled using logistic regression as

logit(pijkl) = ˇ0i + ˛ijk + ˇ1i(%FINE) + ˇ2i(%SLOW) + ˇ3i(WIDTH)

+ˇ4i(%UNDER) + ˇ5i(%CWD)
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All habitat variables were standardized prior to analysis by
subtracting the mean and dividing by the standard devia-
tion (S.D.). Non-informative priors were specified for each
lower-level parameter (ˇ0 − ˇ5) as ∼N(0, 100). Initial covariate
selection was guided by results from previous analyses of the
data (Stoddard and Hayes, 2005). The influences of stand- and
drainage-scale variables were included as higher-level covari-
ates. Stand-scale effects were assumed to modify the intercept
(ˇ0) as

˛ijk ∼ N(�ik, �2
˛i

)

These predictions were modified at the drainage-scale in a
hierarchical manner as

�ik ∼ N(0, �2
� ).

A hierarchical structure was not imposed on the slope
parameters (ˇ1–5). All analyses were done with WinBUGS ver.
1.4.1 which uses a Marcov chain Monte Carlo (MCMC) approach
to characterize the posterior distributions (Lunn et al., 2000).
Partially informative priors were used for the higher-level vari-
ance terms as �˛ and �� ∼ Unif(0, 20). This was done to avoid
situations where the MCMC chain became ‘stuck’ at infinite
variance estimates (Gelman and Hill, 2007). This was a reason-
able assumption, since a one standard deviation range of 0–20
on the logit scale spans the range of probabilities found in this
study. Specifying purely non-informative priors had no appre-
ciable effect on the results (except for the problem mentioned).
A common variance across species for the drainage effects was
found to be an adequate assumption, judged by a deviance
information criterion (DIC). For stand effects, PGS, JTF, and ATF
were found to have a similar variance and were combined. TS
showed a higher variance and this variance was estimated
separately. Habitat covariate selection was also guided by a
lowest DIC criterion in order to select a parsimonious model
that still had high predictive ability. The final model with com-
bined variances as indicated had the lowest DIC of alternative
options. This study was concerned with stream-scale habitat
models, so the higher-scale stand and drainage effects were
considered nuisance variables. Results were based on 100,000
MCMC simulations with every 10th sample retained to reduce
autocorrelation, following a 20,000 iteration burn-in.

3.2. Bayesian network predictions

The focus of this study was predicting amphibian occurrence
for new sites when only partial habitat information was avail-
able. These predictions were made simultaneously with the
model fitting within WinBUGS using the MCMC results for the
model parameters. These simulated predictions were made
for new stands in a new drainage. The stand and drainage
effects were set to zero, which was the mean effect across all
drainages. Predictions were made under different types and
levels of missing information, with results grouped into three
sections. First, we examined model predictions based on fully
measured covariates, and these were compared to predictions
made where certain covariates were missing. The next section
examined the use of co-occurring species survey results for
prediction with missing covariates. The last section examined
combinations of co-occurring species and selected covariates
that were measured with others missing.

Missing covariates were modeled with parametric distribu-
tions to approximate the shape and range of the data (shown
in Fig. 1). It is important to distinguish that these covariates
were missing by design, i.e., not part of the measurement pro-
tocol. Hence, each covariate was either completely measured
at all sample points, or completely missing. The variables
%FINE, %SLOW and %UNDER were modeled as being uni-
formly distributed across the range of observed values. This
was a realistic assumption for the covariates, with the excep-
tion that %SLOW and %UNDER had slightly higher probability
mass at the extremes (i.e., at 0 and 100%). An alternative
approach would be to model covariates as categorical vari-
ables, with frequency of classes based on the observed data
(Borsuk et al., 2004). Observations of %CWD and WIDTH
showed a distinct mode, and were modeled (on the stan-
dardized scale) with a normal and exponential distribution,
respectively. WIDTH was modeled ∼N(0,1), and %CWD as
∼Exp(1.8). Habitat covariates were not correlated, with the
highest r = 0.23.

New predictions were made with a Bayesian network (Pearl,
1988; Lee and Rieman, 1997; Reckhow, 1999; Borsuk et al., 2004)
simultaneous to the Bayesian parameter estimation. BNs are
graphical models used primarily to characterize systems prob-
abilistically, and to update probabilities with new evidence
(Pearl, 1988; Jensen and Nielsen, 2007). The graphical model

Fig. 1 – Bayesian network diagram with model structure indicated for variables (boxes) and conditional relationships
(arrows). The intercept is further modified by stand- and drainage-scale effects (not shown). Habitat covariates were
modeled (if missing) with parametric distributions shown at the top.
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Table 1 – Parameter estimates for Eq. (1), with standard deviations of the estimates in parentheses

Species Parameter

ˇ0 (intercept) ˇ1 (%FINE) ˇ2 (%SLOW) ˇ3 (WIDTH) ˇ4 (%UNDER) ˇ5 (%CWD)

PGS 0.110 (0.298) −0.546 (0.111) 0.166 (0.101) 0.430 (0.107) ns ns
TS −3.428 (0.470) ns ns −0.324 (0.194) ns ns
JTF −2.384 (0.343) −0.801 (0.172) −0.315 (0.140) 0.398 (0.120) −0.151 (0.135) −0.234 (0.179)
ATF −3.979 (0.413) −0.460 (0.254) ns 0.290 (0.182) ns ns

The corresponding covariate names are given. Note: ns denotes non-significant effects where the 90% CIs overlapped with zero.

used is represented in Fig. 1, where the variables are shown as
boxes and the direction of influence is shown by arrows. This
model corresponds to the final habitat models for each species
(Table 1). Driving (i.e., habitat) variables were modeled as com-
ing from a distinct probability distribution. In this study, new
evidence came from the covariates being measured, or from
survey information for one or more of the species. The higher-
level stand- and drainage-effects were omitted from Fig. 1
since these were assigned population average values (zero)
and thus were assumed to be known with certainty.

Updating is carried out using the chain rule of probability
which allows the joint probability of all variables to be factored
into a set of conditional distributions (Pearl, 1988). The BN
structure allows this to be simplified, such that the probability
of a variable xj can be computed based only on the variables
directly influencing it, called the parents of xj (pa(xj)),

P(xj|x1, . . . , xj−1) = P(xj|pa(xj))

The parents of each response variable in Fig. 1 have arrows
pointing to that response, indicating a causal relationship. The
conditional probabilities connecting the habitat variables to
the responses (species probabilities) are given by the hierarchi-
cal Bayesian model Eq. (1). Methods for updating probabilities
with the inclusion of new evidence are outlined in Pearl (1988)
and Jensen and Nielsen (2007). We used the ‘cut’ function
within WinBUGS to isolate parameter estimates fitted by the
model from the modeled (missing) covariates. Otherwise the
modeled values would have been included as ‘data’ and used
in parameter estimation (of ˇ, ˛, and �).

The BN modeling framework allowed us to easily model
missing covariates. Furthermore, the uncertainty in the actual
value of the covariates is carried forward into the predic-
tion uncertainty. This results in predicted probabilities of
occurrence with wider credibility intervals (CIs) than those
predicted using an assumed (but actually unknown) value.
Measured covariates were assumed known without error.
Uncertainty in parameter estimates ˇ, ˛, and � (i.e., standard
errors) were also incorporated into overall prediction error
through their posterior distributions.

We exploited a unique property of BNs to make predic-
tions for a species by incorporating survey information for
co-occurring species. In this approach, the evidence was pres-
ence/absence survey data for one or more of the species.
It was assumed that surveys did not census the species
being predicted. Information is conveyed through the condi-
tional dependence of species on a subset of the same habitat
variables (model covariates). For example, PGS and TS are
both influenced by WIDTH (Fig. 1), so survey information for

the presence or absence of PGS will – with WIDTH and TS
unknown – alter the probability of WIDTH as being higher or
lower than average. This updated (i.e., posterior) distribution
for WIDTH will in turn influence the predicted probability of
TS. In other words, species are linked through shared habi-
tat variables. This information transfer only occurs when
covariates are not known (modeled), otherwise species are
conditionally independent given the covariates. It should be
noted that model predictions are best (smallest CIs) with fully
measured covariates.

A final note on terminology for those less familiar with
Bayesian analyses. We used two types of prior distributions.
First, the model parameters (ˇ, �˛ and �� ) were given prior
distributions as are required for all Bayesian analyses. These
in turn were updated using the data and Bayes theorem,
resulting in the posterior distributions for the parameters (i.e.,
estimates) that were presented in Table 1. Second, prior dis-
tribution were used to described the unknown (i.e., modeled)
habitat covariates. Such distributions are commonly used
in BNs, and in Bayesian analyses involving imputation on
missing covariates (Gelman and Hill, 2007). These prior dis-
tributions were also updated to posterior distributions that
described the expected distribution of the covariates given the
data.

4. Results

The drainage and stand effects had a large influence on proba-
bility of occurrence for all species. The drainage-scale variance
(�2

� ) was estimated as 1.174 with 95% CI of 0.59–2.07. Predicted
drainage effects were between −2.21 and 1.59 on the logit
scale, across all species. Stand effects were estimated within a
drainage and showed a lower variance for PGS, JTF and ATF (�2

˛

0.45) than for TS (�2
� 3.91). Stand effects for TS were between

−1.77 and 5.45, reflecting the large variance. TS have a patchy
distribution (Welsh and Lind, 1996) which may explain the
large variance of stand effects. For the other species, stand
effects were between −2.5 and 2.3.

The final HB model explained 24% of the deviance over a
null model, and included covariates listed in Table 1. Covariate
selection was guided by 90% CIs, where variables that over-
lapped with zero were dropped. These variables had nominal
influence on model predictions, as judged by an substantial
18 point drop in DIC between the full and reduced models.
Our goal was to develop a parsimonious model that still had
high predictive ability, rather than an ecological analysis on
the effects of certain habitat elements on amphibians. While
retaining all habitat covariates in the model was possible,
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most existing habitat models have a similarly parsimonious
form. Since BN predictions rely on the final model (and do not
influence model selection) this parsimonious model allowed
a more realistic and understandable application. The final
model structure is shown graphically in Fig. 1, showing that
species were influenced by common habitat covariates and
were connected through these shared influences. The covari-
ates were standardized prior to model fitting, so can be
interpreted as the effect (on the logit scale) of a one standard
deviation increase in measured values.

The model in this study differs from the previous analy-
ses by Stoddard and Hayes (2005) in the use of a hierarchical
structure to incorporate effects of stand and drainage effects
on stream-scale predictions. For this reason, we did not expect
to necessarily find all of the same significant covariates, and
possibly even a change in the direction of influence for others.
Such changes in inference are broadly referred to as Simpson’s
paradox (Pearl, 2000). For example, percentage shrub cover of
the stream was shown to be important in models only con-
sidering stream-scale influences (Stoddard and Hayes, 2005).
In contrast, once stand- and drainage-scale influences were
accounted for, the percentage shrub cover was found to be
not significant. This was due to certain drainages and stands
having consistently high or low shrub cover, and the effects
of shrubs could not be separated from the stand or drainage
effects.

5. Applications

We present examples of predictions made with evidence from
two sources: measured covariates and species surveys. First,
model results are given with completely measured covariates
to provide a reference. Second we show species predictions
where all covariates were unmeasured, and contrast this
with partially measured covariates. Next we incorporate sur-
vey information from co-occurring species into predictions.
Finally, we incorporate a mixture of habitat and co-occurring
species information. Throughout the text we referred to ‘mea-
sured’ covariates as one that were actually measured in the
field, so they were known with certainty. We further distin-
guished unmeasured covariates as being ‘modeled.’

5.1. Predictions with full information

Model predictions will have the highest precision when all
covariates are measured. Predictions were made by assigning
the average value to each covariate, representing full informa-
tion. These predictions roughly correspond to sample-based
mean occurrences of the species, except for JTF (Table 2).
An exact correspondence was not expected because of the
differences between model- and designed-based estimates
(Thompson, 2002), but these differences were not relevant
since we were concerned with point predictions rather than
population estimates. The models were conditionally inde-
pendent across species with all covariates measured (Fig. 1),
so survey information for co-occurring species would not
increase precision of the predictions.

For comparison, model predictions and standard devia-
tions were computed where none of the covariates were

Table 2 – Sample-based and model-based mean
probability of occurrence for each species

Species Sample-
baseda

Model-based with covariatesb

Measured Modeled

PGS 0.53 0.527 (0.385, 0.672) 0.524 (0.198, 0.834)
TS 0.095 0.035 (0.012, 0.071) 0.037 (0.009, 0.092)
JTF 0.162 0.071 (0.035, 0.127) 0.098 (0.010, 0.337)
ATF 0.046 0.020 (0.008, 0.039) 0.024 (0.004, 0.070)

a Mean probability of occurrence across all sample points.
b Model-based predictions were made with all covariates measured

or modeled (i.e., missing). 90% CIs are given in parentheses.

measured (i.e., all covariates were modeled) (Table 2), with
results presented on the logit scale (Fig. 2). The substantially
higher uncertainty in predictions comes from modeling the
covariates. Standard deviations were roughly twice that of pre-
dictions with measured covariates, with this increase reflected
in wider CI’s (Table 2).

5.2. Prediction with missing covariates

For comparison, predictions were made where information on
a subset of model covariates was available. This is a common

Fig. 2 – Predicted probability of occurrence for each of the
four species with certain habitat covariates missing.
Predictions shown are posterior distributions of probability
on the logit scale. Predictions with all covariates measured
are shown as gray-shaded distributions. See applications for
assigned covariate values. Predictions with all covariates
missing (modeled) are shown as solid lines. Predictions
based on one or more measured covariates are shown as
dashed lines. The legend indicates which covariates were
measured with the remaining covariates modeled.



Author's personal copy

e c o l o g i c a l m o d e l l i n g 2 1 4 ( 2 0 0 8 ) 210–218 215

occurrence in many fields (e.g., Borsuk et al., 2004) especially
where data come from a variety of sources. Stream width influ-
enced all species and was always included as a measured
covariate. In addition to WIDTH, other predictions included
the measured covariates %FINE alone or in combination with
%SLOW. The remaining covariates were modeled as before. All
measured covariates were assumed to have mean values (all
zero on the standardized scale). Results were overlaid with
prediction with all covariates modeled. For reference, predic-
tions with all covariates measured were shown in Fig. 2 as
grey-shaded distributions.

Precision of predictions was related to the amount and type
of available evidence. These varied for the different species
depending on the combination of measured and modeled
covariates (Fig. 2). Probability (on the logit scale) of PGS was
poorly predicted when only WIDTH was available, but the
inclusion of %FINE decreased the prediction interval (i.e., vari-
ance of the posterior distributions) to nearly that of when
all covariates were measured. In contrast to results for the
other species, TS was predicted with higher error by the model
(Table 2), and this was reflected in similar prediction intervals
for situations where all covariates were modeled or measured
(Fig. 2). Modeling missing covariates did not shift predictions
higher or lower, because the assumed distributions of the
covariates had the same means as the assigned values.

Basing the expected distribution of a covariate on the
field surveys was reasonable in this study. The sample points
were chosen randomly so we expect the sample to represent
the broader study area. There was only a weak correlation
between certain covariates, so no attempt was made to model
these as conditional relationships. In cases where strong
correlations exist, this may prove advantageous since infor-
mation about one variable can provide information about
another. Further, stand- and watershed timber harvesting
can strongly influence habitat covariates, particularly %FINE
and %CWD. As better data become available, the modeled
covariate distributions should be modified to include these
management effects. As the BN is structured (Fig. 1) measured
information on one habitat covariate does not influence our
belief about the others. This situation changes when survey
information for co-occurring species is available, as demon-
strated in the next section.

5.3. Predictions with information on co-occurring
species

Survey information for co-occurring species is an additional
source of information (evidence) that can be exploited by the
BN framework. In this situation, survey information would be
available for species that are influenced by at least one of the
same covariates (shown in Table 1). That is, the model struc-
ture was conditionally dependent across species, provided at
least one shared covariate was missing (Fig. 1). Predictions
were made for TS and JTF with all covariates modeled and
using survey information for co-occurring species.

The influence of surveyed species on the probability of
non-surveyed species was entirely through the shared covari-
ates in our model structure. For TS, this connection was weak
because WIDTH – the only covariate that was shared with the
other three species – had only a weak influence on these other

Fig. 3 – Species occurrence probabilities for JTF and TS
incorporating survey information for co-occurring species,
shown on the logit scale. Predictions with all covariates
measured are shown as gray-shaded distributions for
reference. Predictions with all covariates modeled are
shown as solid lines and incorporated no survey
information. The legend indicates survey results
(present = Yes, absent = No) for the co-occurring species.

species (Table 1). With survey information on a single species,
the predictions of TS was only slightly different from mod-
els with all missing covariates (Fig. 3). The reason for this can
be seen in predictions for WIDTH based on the species survey
information. Including survey results for PGS resulted in only a
slight shift in WIDTH probability (Fig. 4a), corresponding to the
direction of influence of WIDTH on PGS (Table 1). In contrast,
predictions for JTF were more influenced by survey informa-
tion for co-occurring species (Fig. 3). The probability of %FINE
was initially modeled as being uniformly distributed over the
range of observations. With the evidence that species surveys
provided, the posterior distribution of %FINE was considerably
altered (Fig. 4b). In this case, PGS, JTF and ATF were surveyed
for and were all present, and thus the probability of %FINE was
strongly expected to have a low value indicating habitats with
coarse hiding cover. This in turn, altered predictions for the
species that respond to %FINE.

The strength of the approach is in connecting species
through shared ‘driving’ variables. This allows model-based
predictions to incorporate other surveyed species in situations
where certain covariates were missing. Predictions were best
(smallest CIs) when all covariates were measured, but if mea-
sured covariates are not available this approach allows more
accurate predictions than by simply assuming a mean value.
As with modeling covariates, the uncertainty in the covari-
ate value is carried forward into prediction uncertainty. There
are many situations where a host of species (flora and fauna)
respond to a shared set of habitat variables, and this approach
allows us to learn about the variables important to their distri-
bution and success through observed species ‘responses.’ This
approach is not limited to presence/absence data.

5.4. Predictions with a mixture of information

As a final example, we made predictions for a relatively
abundant species PGS, with a mixture of available habitat
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Fig. 4 – Modeled and updated probabilities for habitat
covariates WIDTH (a) and %FINE (b). Predictions are shown
as modeled (normal or uniform priors) and updated
(posterior) distributions with evidence from co-occurring
species survey information, detailed in Fig. 3.

and species information. This situation is relatively common,
where available data for an area of interest collectively comes
from several decades of species and habitat surveys. We also
discuss possible efficiency gains in surveys by selectively mod-
eling certain covariates, or only surveying for easily detectible
and relatively common species.

For reference, predictions for PGS were contrasted with
situations where all covariates were fully measured or mod-
eled. In this simulation, WIDTH was assigned to be 2 m (1.5
S.D. > avg.) and %FINE was 10% (1.5 S.D. < avg.). Modeled covari-
ates were incorporated into predictions in the same way as the
previous examples. Incorporating positive survey results for
JTF resulted in higher mean probability of occurrence for PGS
(Fig. 5a and b) due to this information’s influence on the mod-
eled covariates. That is, finding JTF influenced the probability
distribution of %SLOW, which was expected to have lower val-
ues (i.e., more riffles and cascades) reflecting the fact that JTF

Fig. 5 – Probability of occurrence for Pacific giant
salamander on the logit (a) and probability (b) scales,
predicted with a combination of measured and modeled
covariates and survey information for co-occurring species.
Missing covariates were modeled as described in the text.
The expected distribution for %SLOW (c) is shown as
modeled (uniform prior) and updated (posterior)
distributions with evidence from JTF surveys.

was associated with faster water (Fig. 5c). Further incorporat-
ing information about WIDTH and %FINE both increased the
probability of finding PGS given that these were positively and
negatively related to PGS, respectively (Table 1). This example
was chosen to demonstrate a relatively large shift in expected
responses for a species; other responses were less dramatic
but this all depended on the scenario.

6. Discussion

We demonstrated the utility of the BN approach for mak-
ing predictions when certain habitat covariates were missing.
This is a common situation in wildlife management where
available data may come from different agencies, or were
collected for an entirely different purpose such as stream
restoration, floristic inventories or fish surveys. The ability to
utilize all available datasets for answering management ques-
tions needs to be a priority, given the tight financial constraints
most agencies have. The BN approach is different from a guild,
or an indicator species approach to management since the
different species are tied together through shared habitat vari-
ables. Predictions and inferences are unique for each species,
and are related to their specific habitat needs.

Modeling unavailable covariates captures uncertainty in
the actual values, and carries this uncertainty forward through
the predictions (Pearl, 1988; Borsuk et al., 2004). This approach
is a form of multiple imputation (Rubin, 1996), and is a better
approach than making the simple assumption of a popula-
tion mean value. Missing or unmeasured covariates could be
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modeled using available data such as that collected during
the region-wide current vegetation survey (Max et al., 1996)
or local stand exams. The ability to model covariates can also
allow habitat models to be used, rather than assuming an
average frequency for a species. The alternative approach of
re-fitting habitat models to only available information is usu-
ally untenable, especially for managers.

Including survey information for other species in pre-
dictions exploits a unique property of the BN framework
(Pearl, 1988). It allows a response-mediated inference on the
modeled covariates, in essence ‘passing information’ from
one measured response variable to another though shared
driving variables. This is referred to as belief updating or mes-
sage passing about a modeled element (Pearl, 1988; Jensen
and Nielsen, 2007). In this study, survey information on co-
occurring species had little influence on the variance of
predictions, but shifted the mean probability of occurrence
possibly leading to different management inferences.

Our amphibian examples were somewhat contrived since
surveys would routinely record all observations of the four
species. However, in many situations surveys may not be
possible for a complete set of species or due to pressure to
reduce sampling costs. For example, ‘light touch’ surveys that
are effective for PGS may not be for TS which often burrow
into gravel in streams. Possible efficiency gains can be made
using surveys that quickly record presence or absence of easily
observed species (such as PGS). This type of information could
also come from the Survey and Manage program on Federal
land, and could then be used to help make predictions for co-
occurring species. Alternatively, an efficient survey could be
developed that might include songbird surveys focusing on a
select species. Together with a subset of easily observed (but
relevant) habitat characteristics in the field, from aerial pho-
tos or GIS information, information from these surveys could
provide evidence to make precise predictions for co-occurring
species. Sampling efficiency becomes critical where relatively
fine-scale (stand or drainage basin) frequency predictions for
species of interest are needed over large areas, such as an
entire National Forest. Using the approach we describe, accu-
rate model-based predictions could be made for a species
without intensive and costly field surveys. In addition, because
uncertainty in the modeled covariates and parameter esti-
mates are carried forward in the prediction, managers can
assess the precision of the predictions. If higher precision is
warranted for an area, then targeted field surveys could be
conducted. Predictions that account for all sources of uncer-
tainty are needed for assessing risk (Varis and Kuikka, 1999;
Borsuk et al., 2004; Lee and Irwin, 2005).

An advantage of our approach is that it does not directly
rely on species–species correlations, which are often highly
dependent on local conditions. This is not to say that
species–species correlations are unimportant. In fact, when
species are jointly dependent on a subset of shared habitat
variables we would expect to find strong species correlations
(negative or positive). Further, since these correlations are
realized through the habitat variables our approach should
lead to more robust predictions. An alternative approach
includes stratifying sampling areas for one species based on
the predicted frequency of a different species. Edwards et al.
(2005) showed efficiency gains using habitat models for rela-

tively common lichens in the Oregon Coast Range, and then
stratified the sampling design for rare lichen species based
on their association with common species. Many such survey
approaches are possible, but most rely on collecting new data
(MacKenzie et al., 2004; Edwards et al., 2005). Our approach
focused on efficiency gains from using existing datasets and
survey information.

The probabilistic framework of BNs provides a natural
platform for incorporating uncertainty into modeling (Clark
and Gelfand, 2006). For example, the model can be expanded
to incorporate species responses to partial harvesting (Corn
and Bury, 1989; Olson et al., 2007), that also include uncer-
tainty in that response. Similarly, future conditions can be
modeled such as rainfall or stream levels (Borsuk et al.,
2004), given appropriate information about the distribution
of likely events. Simulating hypothesized changes due to cli-
mate change or management is another application. Lastly,
although species detectability was not estimated during the
study, this can be included in the Bayesian model (e.g., Royle
and Kery, 2007). In the absence of detectability estimates,
the BN framework could be used to explore the potential
effects of variable detectability on population inferences. In
this case, different levels of detectability (along with uncer-
tainty in the estimates) would be modeled as a variable in
the BN.

This BN approach can be conducted in tailor made com-
mercial software such as Hugin® or Netica®, using different
methods than MCMC for probability updating. Most commer-
cial packages are also constrained to categorical variables
or Gaussian distributions (see Uusitalo, 2007 and references
therein). However, we wish to stress that the formal def-
inition of BNs does not require categorical (i.e., discrete)
variables (Jensen and Nielsen, 2007). Updating methods are
different with continuous variables, but these can allow for
richer application of these methods to common ecological
problems.

The BN predictions in this study could have been made
separately to the parameter estimation, but they were done
simultaneously in this study for analytical convenience. In
the separate case, the model structure would be the same
(hierarchical logistic model) but parameter estimates would
be included as new variables. The parameters (ˇ’s) are then
modeled as ∼MVN(�, �) with terms estimated by the poste-
rior means and variance–covariance matrix from the model
fit. Alternatively, the regression equations could be fitted with
ordinary least squares (Borsuk et al., 2004). BN predictions and
belief updating would then be made using MCMC within Win-
BUGS, in a manner similar to this study. The added advantage
in using a joint Bayesian estimation and prediction approach
in WinBUGS or any MCMC Bayesian package is that new sur-
vey information can be used to update habitat models (Clark
and Gelfand, 2006). This is a topic of ongoing study, where
regional habitat models can utilize survey information at the
local scale to make better local predictions.
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